A measure of central location provides a single value that summarizes an entire distribution of data. In contrast, a frequency measure characterizes only part of the distribution. Frequency measures compare one part of the distribution to another part of the distribution, or to the entire distribution. Common frequency measures are ratios, proportions, and rates. All three frequency measures have the same basic form:
denominator
× 10 n
Recall that:
100 = 1 (anything raised to the 0 power equals 1)
101 = 10 (anything raised to the 1st power is the value itself)
102 = 10 × 10 = 100
103 = 10 × 10 × 10 = 1,000
So the fraction of (numerator/denominator) can be multiplied by 1, 10, 100, 1000, and so on. This multiplier varies by measure and will be addressed in each section.
Ratio Definition of ratio
A ratio is the relative magnitude of two quantities or a comparison of any two values. It is calculated by dividing one interval- or ratio-scale variable by the other. The numerator and denominator need not be related. Therefore, one could compare apples with oranges or apples with number of physician visits.
Method for calculating a ratio
Number or rate of events, items, persons,
etc. in one group
Number or rate of events, items, persons,
etc. in another group
After the numerator is divided by the denominator, the result is often expressed as the result “to one” or written as the result “:1.”
Note that in certain ratios, the numerator and denominator are different categories of the same variable, such as males and females, or persons 20–29 years and 30–39 years of age. In other ratios, the numerator and denominator are completely different variables, such as the number of hospitals in a city and the size of the population living in that city.
EXAMPLE: Calculating a Ratio — Different Categories of Same Variable
Between 1971 and 1975, as part of the National Health and Nutrition Examination Survey (NHANES), 7,381 persons ages 40–77 years were enrolled in a follow-up study.(1) At the time of enrollment, each study participant was classified as having or not having diabetes. During 1982–1984, enrollees were documented either to have died or were still alive. The results are summarized as follows.
Participant |
Original Enrollment |
Dead at Follow-Up |
Diabetic men |
189 |
100 |
Nondiabetic men |
3,151 |
811 |
Diabetic women |
218 |
72 |
Nondiabetic women |
3,823 |
511 |
Of the men enrolled in the NHANES follow-up study, 3,151 were nondiabetic and 189 were diabetic. Calculate the ratio of non-diabetic to diabetic men.
Ratio = 3,151 ⁄ 189 × 1 = 16.7:1
Properties and uses of ratios
- Ratios are common descriptive measures, used in all fields. In epidemiology, ratios are used as both descriptive measures and as analytic tools. As a descriptive measure, ratios can describe the male-to-female ratio of participants in a study, or the ratio of controls to cases (e.g., two controls per case). As an analytic tool, ratios can be calculated for occurrence of illness, injury, or death between two groups. These ratio measures, including risk ratio (relative risk), rate ratio, and odds ratio, are described later in this lesson.
- As noted previously, the numerators and denominators of a ratio can be related or unrelated. In other words, you are free to use a ratio to compare the number of males in a population with the number of females, or to compare the number of residents in a population with the number of hospitals or dollars spent on over-the-counter medicines.
- Usually, the values of both the numerator and denominator of a ratio are divided by the value of one or the other so that either the numerator or the denominator equals 1.0. So the ratio of non-diabetics to diabetics cited in the previous example is more likely to be reported as 16.7:1 than 3,151:189.