The key to epidemiologic analysis is comparison. Occasionally you might observe an incidence rate among a population that seems high and wonder whether it is actually higher than what should be expected based on, say, the incidence rates in other communities. Or, you might observe that, among a group of case-patients in an outbreak, several report having eaten at a particular restaurant. Is the restaurant just a popular one, or have more case-patients eaten there than would be expected? The way to address that concern is by comparing the observed group with another group that represents the expected level.
A measure of association quantifies the relationship between exposure and disease among the two groups. Exposure is used loosely to mean not only exposure to foods, mosquitoes, a partner with a sexually transmissible disease, or a toxic waste dump, but also inherent characteristics of persons (for example, age, race, sex), biologic characteristics (immune status), acquired characteristics (marital status), activities (occupation, leisure activities), or conditions under which they live (socioeconomic status or access to medical care).
The measures of association described in the following section compare disease occurrence among one group with disease occurrence in another group. Examples of measures of association include risk ratio (relative risk), rate ratio, odds ratio, and proportionate mortality ratio.
Risk ratio Definition of risk ratio
A risk ratio (RR), also called relative risk, compares the risk of a health event (disease, injury, risk factor, or death) among one group with the risk among another group. It does so by dividing the risk (incidence proportion, attack rate) in group 1 by the risk (incidence proportion, attack rate) in group 2. The two groups are typically differentiated by such demographic factors as sex (e.g., males versus females) or by exposure to a suspected risk factor (e.g., did or did not eat potato salad). Often, the group of primary interest is labeled the exposed group, and the comparison group is labeled the unexposed group.
Method for Calculating risk ratio
The formula for risk ratio (RR) is:
Risk of disease (incidence proportion, attack rate) in group of primary interest
[Image: divided by]
Risk of disease (incidence proportion, attack rate) in comparison group
A risk ratio of 1.0 indicates identical risk among the two groups. A risk ratio greater than 1.0 indicates an increased risk for the group in the numerator, usually the exposed group. A risk ratio less than 1.0 indicates a decreased risk for the exposed group, indicating that perhaps exposure actually protects against disease occurrence.
EXAMPLES: Calculating Risk Ratios
Example A: In an outbreak of tuberculosis among prison inmates in South Carolina in 1999, 28 of 157 inmates residing on the East wing of the dormitory developed tuberculosis, compared with 4 of 137 inmates residing on the West wing.(11) These data are summarized in the two-by-two table so called because it has two rows for the exposure and two columns for the outcome. Here is the general format and notation.
Table 3.12A General Format and Notation for a Two-by-Two Table
Ill |
Well |
Total |
|
Total |
a + c = V1 |
b + d = V0 |
T |
Exposed |
a |
b |
a + b = H1 |
Unexposed |
c |
d |
c + d = H0 |
In this example, the exposure is the dormitory wing and the outcome is tuberculosis) illustrated in Table 3.12B. Calculate the risk ratio.
Example B: In an outbreak of varicella (chickenpox) in Oregon in 2002, varicella was diagnosed in 18 of 152 vaccinated children compared with 3 of 7 unvaccinated children. Calculate the risk ratio.
Table 3.13 Incidence of Varicella Among Schoolchildren in 9 Affected Classrooms — Oregon, 2002
Varicella |
Non-case |
Total |
|
Total |
21 |
138 |
159 |
Vaccinated |
a = 18 |
b = 134 |
152 |
Unvaccinated |
c = 3 |
d = 4 |
7 |
Data Source: Tugwell BD, Lee LE, Gillette H, Lorber EM, Hedberg K, Cieslak PR. Chickenpox outbreak in a highly vaccinated school population. Pediatrics 2004 Mar;113(3 Pt 1):455–459.
Risk of varicella among vaccinated children = 18 ⁄ 152 = 0.118 = 11.8%
Risk of varicella among unvaccinated children = 3 ⁄ 7 = 0.429 = 42.9%
Risk ratio = 0.118 ⁄ 0.429 = 0.28
The risk ratio is less than 1.0, indicating a decreased risk or protective effect for the exposed (vaccinated) children. The risk ratio of 0.28 indicates that vaccinated children were only approximately one-fourth as likely (28%, actually) to develop varicella as were unvaccinated children.